Molecular and Cellular Pathobiology Cancer-Derived Mutations in KEAP1 Impair NRF2 Degradation but not Ubiquitination

نویسندگان

  • Bridgid E. Hast
  • Erica W. Cloer
  • Dennis Goldfarb
  • Heng Li
  • Priscila F. Siesser
  • Feng Yan
  • Vonn Walter
  • Ning Zheng
  • D. Neil Hayes
  • Michael B. Major
چکیده

NRF2 is a transcription factor that mediates stress responses. Oncogenic mutations in NRF2 localize to one of its two binding interfaces with KEAP1, an E3 ubiquitin ligase that promotes proteasome-dependent degradation of NRF2. Somatic mutations in KEAP1 occur commonly in human cancer, where KEAP1 may function as a tumor suppressor. These mutations distribute throughout the KEAP1 protein but little is known about their functional impact. In this study, we characterized 18 KEAP1 mutations defined in a lung squamous cell carcinoma tumor set. Four mutations behaved as wild-type KEAP1, thus are likely passenger events. R554Q, W544C, N469fs, P318fs, and G333C mutations attenuated binding and suppression of NRF2 activity. The remaining mutations exhibited hypomorphic suppression of NRF2, binding both NRF2 and CUL3. Proteomic analysis revealed that the R320Q, R470C, G423V, D422N, G186R, S243C, and V155F mutations augmented the binding of KEAP1 and NRF2. Intriguingly, these "super-binder" mutants exhibited reduced degradation of NRF2. Cell-based and in vitro biochemical analyses demonstrated that despite its inability to suppress NRF2 activity, the R320Q "superbinder" mutant maintained the ability to ubiquitinate NRF2. These data strengthen the genetic interactions between KEAP1 and NRF2 in cancer and provide new insight into KEAP1 mechanics. Cancer Res; 74(3); 808–17. 2013 AACR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cancer-derived mutations in KEAP1 impair NRF2 degradation but not ubiquitination.

NRF2 is a transcription factor that mediates stress responses. Oncogenic mutations in NRF2 localize to one of its two binding interfaces with KEAP1, an E3 ubiquitin ligase that promotes proteasome-dependent degradation of NRF2. Somatic mutations in KEAP1 occur commonly in human cancer, where KEAP1 may function as a tumor suppressor. These mutations distribute throughout the KEAP1 protein but li...

متن کامل

Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress.

A common feature of diverse chemopreventive agents is the ability to activate expression of a genetic program that protects cells from reactive chemical species that, if left unchecked, would cause mutagenic DNA damage. The bZIP transcription factor Nrf2 has emerged as a key regulator of this cancer-preventive genetic program. Nrf2 is normally sequestered in the cytoplasm by a protein known as ...

متن کامل

Molecular and Cellular Pathobiology Proteomic Analysis of Ubiquitin Ligase KEAP1 Reveals Associated Proteins That Inhibit NRF2 Ubiquitination

Somatic mutations in the KEAP1 ubiquitin ligase or its substrate NRF2 (NFE2L2) commonly occur in human cancer, resulting in constitutive NRF2-mediated transcription of cytoprotective genes. However, many tumors display high NRF2 activity in the absence of mutation, supporting the hypothesis that alternative mechanisms of pathway activation exist. Previously, we and others discovered that via a ...

متن کامل

Molecular and Cellular Pathobiology Select Heterozygous Keap1 Mutations Have a Dominant- Negative Effect on Wild-Type Keap1 In Vivo

Under homeostatic conditions, Keap1 constitutively mediates the proteasomal degradation Nrf2. However, tertiary changes in Keap1 in response to the cellular environment allow for liberation of Nrf2 to transcriptionally regulate downstream cytoprotective genes that aid in cell survival. KEAP1/NRF2 somatic mutations causing constitutive NRF2 activation have been estimated to occur in approximatel...

متن کامل

Keap1 controls postinduction repression of the Nrf2-mediated antioxidant response by escorting nuclear export of Nrf2.

The transcription factor Nrf2 regulates cellular redox homeostasis. Under basal conditions, Keap1 recruits Nrf2 into the Cul3-containing E3 ubiquitin ligase complex for ubiquitin conjugation and subsequent proteasomal degradation. Oxidative stress triggers activation of Nrf2 through inhibition of E3 ubiquitin ligase activity, resulting in increased levels of Nrf2 and transcriptional activation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014